APPLICATION OF OPTIMIZATION TECHNIQUES TO NAVAL SURFACE COMBATANT SHIP SYNTHESIS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA J L JENKINS OCT 82 _ AD-A125 271 1/1 F/G 13/10 UNCLASSIFIED NL MICROCOPY RESOLUTION TEST CHART MATIONAL BUREAU OF STANDARDS-1963-A # NAVAL POSTGRADUATE SCHOOL Monterey, California # **THESIS** APPLICATION OF OPTIMIZATION TECHNIQUES TO NAVAL SURFACE COMBATANT SHIP SYNTHESIS by James L. Jenkins October, 1982 Thesis Advisor: Garret N. Vanderplaats MAR 3 1983 Approved for public release; distribution unlimited. SECURITY CLASSIFICATION OF THIS PAGE (When Both Balance) | REPORT DOCUMENTATION | PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | |---|-------------------------------------|--| | T. REPORT HUMBER | | 1. RECIPIENT'S CATALOG NUMBER | | | AD-A125271 | | | 4. 717LE (and Substitle) | • | Master's Thesis | | Application of Optimization 7 | October, 1982 | | | to Naval Surface Combatant Sh | 4. PERFORMING ORG. REPORT NUMBER | | | 7. AUYHOR(a) | | S. CONTRACT OR GRANT NUMBER(s) | | James L. Jenkins | | | | S. PERFORMING ORGANIZATION NAME AND ADDRESS | | 10. PROGRAM ELEMENT, PROJECT TASI | | Naval Postgraduate School | | | | Monterey, California 93940 | | | | 11. CONTROLLING OFFICE NAME AND ADDRESS | | 12. REPORT DATE | | Naval Postgraduate School | | October, 1982 | | Monterey, California 93940 | 13. HUMBER OF PAGES 95 | | | TE. MONITORING AGENCY HAME & ADDRESSUL differen | 18. SECURITY CLASS. (of the report) | | | | | | | | | ISO. DECLASSIFICATION/DOWNGRADING | | 2 Experience of Company (Al Ma Propil | | | IS. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 19. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block mather) Ship synthesis Optimization Numerical optimization Computer-aid design (CAD) Ship design Conceptual design Naval architecture 28. ABSTRACT (Continue on reverse side if necessary and identify by block munber) This thesis presents a method of reducing the time required to accomplish ship design feasibility studies by coupling a naval surface combatant synthesis model with a general purpose nonlinear optimizer. Brief descriptions of optimization techniques and synthesis models are presented. The selection of design variables, constraints, and objective function is presented via a design example. Further examples are given illustrating the ability. DD 1 JAN 73 1473 EDITION OF 1 NOV 00 IS OCCULETE Value con't # 20. ABSTRACT (Continued) to start with infeasible designs and proceed, through optimization, to feasible designs. Examples of ships developed using different objective functions are also presented. The synthesis/optimizer system provides results in a rapid and descriptive manner which compare favorably with existing designs and provides the naval architect with an efficient tool to use in the conceptual design phase of naval surface combatants. DD Form 1473 S/N 0102-014-6601 Approved for public release; distribution unlimited. Application of Optimization Techniques to Naval Surface Combatant Ship Synthesis bу James L. Jenkins Lieutenant, United States Navy B.S.E., University of Michigan, 1975 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL October, 1982 | Author: | James L. Genkins | |--------------|---| | Approved by: | Sant 11. Vanderslante | | | MR Mlach Thesis Advisor | | | Second Reader | | | Chairman, Spartment of Mechanical Engineering | | | Dean of Science and Engineering | ## **ABSTRACT** This thesis presents a method of reducing the time required to accomplish ship design feasibility studies by coupling a naval surface combatant synthesis model with a general purpose nonlinear optimizer. Brief descriptions of optimization techniques and synthesis models are presented. The selection of design variables, constraints, and objective function is presented via a design example. Further examples are given illustrating the ability to start with infeasible designs and proceed, through optimization, to feasible designs. Examples of ships developed using different objective functions are also presented. The synthesis/optimizer system provides results in a rapid and descriptive manner which compare favorably with existing designs and provides the naval architect with an efficient tool to use in the conceptual design phase of naval surface combatants. # TABLE OF CONTENTS | ı. | INT | RODUCT | rion | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 10 | |------|-----------|--------|--------|-----|-----|------|------|-----|-----|------|-----|-----|-----|-----|-----|----|-----|----|----|---|---|----| | | A. | BACK | GROUN | D. | • | • | • | | • | • | • | • | • | | • | • | • | • | • | • | | 10 | | | в. | PROBI | Lem s | TAT | EMI | ENT | ľ | • | • | • | • | • | • | • | • | • | • | • | • | | • | 12 | | | c. | SCOPI | E . | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 13 | | | D. | PRESI | ENTAT | ION | O1 | e 1 | HE | SI | S | • | • | • | • | • | • | • | • | • | • | • | • | 17 | | II. | OPT | IMIZAT | CION | TEC | HN: | [Q[| JES | } | | • | • | • | • | • | • | • | • | • | • | • | • | 19 | | | A. | INTRO | DUCT | ION | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 19 | | | в. | DEFI | OITIO | NS | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 19 | | | c. | COPES | S/CON | MIN | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 21 | | III. | SHI | P SYNT | rhes i | s M | ODI | ELS | 3 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 27 | | | A. | HISTO | ORY | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 27 | | | в. | REED | MODE | L D | ESC | CRI | PT | 'IO | N | • | • | • | • | • | • | • | • | • | • | • | • | 28 | | | c. | REED | MODE | L O | RG | AN I | ZA | TI | ON | ſ | • | • | • | • | • | • | • | • | • | • | • | 29 | | IV. | COU | PLING | COPE | S/C | ONI | MIN | T A | ND | T | HE | E F | REE | ED | MC | DI | EL | • | • | • | • | • | 36 | | | A. | SELEC | CTION | OF | DI | ES I | GN | V | AF | lI A | BI | ES | S & | INI |) (| BJ | JEC | T1 | VI | 3 | | | | | | FUNC | rions | • | • | • | • | • | • | • | • | | • | • | • | • | | • | • | • | • | 36 | | | В. | THE (| GLOBC | M S | TA? | re) | ŒN | T | • | • | • | | • | • | • | • | • | | • | • | • | 38 | | | c. | CONST | TRAIN | TS | • | • | • | | • | • | • | • | • | • | | • | | • | • | • | • | 39 | | | D. | FURTI | HER P | ROG | RAI | K 1 | (OD | IF | 'IC | ra: | `IC | SMC | 3 | | • | | • | • | | • | • | 42 | | ٧. | DES | IGN E | KAMPL | E. | • | • | • | • | • | • | • | | • | | • | | • | | • | • | • | 45 | | | A. | INTRO | ODUCT | ION | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 45 | | | в. | EXAM | PLE D | esc | RI | PT1 | ON | ľ | • | • | • | • | • | | • | • | • | • | • | • | • | 45 | | | c. | PARAI | METER | DE | SCI | RII | PT I | ON | S | • | • | • | • | • | • | • | • | | • | • | • | 48 | | | D. | CONST | RAINT | PI | IILC | SO1 | PHY | • | • | • | • | • | • | • | • | • | • | • | • | • | 51 | |--------|-------|----------|----------|-----|------|------|------|-----|-----|----|-----|---|----|----|----|-----|---|---|---|---|----| | | E. | EXAMP | LE RE | SUI | LTS | • | | • | • | • | • • | • | • | • | • | • | • | • | • | • | 54 | | VI. | SYNT | THESIS | SYST | EM | APF | LIC | CAT | [0] | 1 | • | • | • | • | • | • | • | • | • | • | • | 58 | | | A. | DESIG | N EXA | MPI | LES | US | ING | D | [FI | EF | REN | T | OE | JE | CI | 712 | Æ | | | | | | | | FUNCT | IONS | | | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | 58 | | | В. | SENSI | TIVIT | Y S | STUE | IES | 3. | • | • | • | • | • | • | • | • | • | • | • | • | • | 63 | | | c. | SYSTE | M TRA | DE- | -OFI | r si | rudy | 7 | • | • | • | • | • | • | • | • | • | • | • | • | 64 | | VII. | CONC | CLUSIO | ns an | D F | RECC | MMI | END! | AT] | [0] | S | • | • | • | • | • | • | • | • | • | • | 68 | | LIST C | F RE | FEREN(| CES | | | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | 71 | | APPENI | OIX A | A: DE | SIGN | EXA | MPI | E | | • | • | • | • | • | • | • | • | • | • | • | • | • | 74 | | APPENI | OIX E | 3: GL | DBAL | CAT | CALC | G . | | • | • | • | • | • | • | • | • | • | • | • | • | • | 90 | | APPENI | OIX (| : NOI | MENCL | JTA | JRE | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | 92 | | ***** | u ni | CMD 1 D1 | TITE TAN | | r em | | | | | | | | | | | | | | | | 94 | Consideration of the control Roberts and American American Assessment # LIST OF TABLES | I. | Military Payload List | • | • | • | • | • | • | 46 | |-------|---------------------------------------|---|-------|-----|---|---|---|----| | II. | Ship Specifications List | • | • | • | • | • | • | 48 | | III. | Side Constraints on Design Variables | • | • | • | • | • | • | 51 | | IV. | COPES/CONMIN Data Blocks | • | • | • | • | • | • | 54 | | v. | Initial and Optimum Parameter Values | • | • | • | • | • | • | 55 | | VI. | Comparison of Different Designs | • | • | • | • | • | • | 59 | | VII. | Repeatability of Data | • | • | • | • | • | • | 61 | | VIII. | Systems Trade_off Study on Propulsion | D | 7 0 1 | nte | = | | | 66 | # LIST OF FIGURES | 1.1 | Traditional Design Spiral | 14 | |-----|------------------------------------|----| | 1.2 | Optimized Design Spiral | 15 | | 2.1 | Two Variable Design Space Example | 24 | | 3.1 | Reed Model Program Organization | 30 | | 3.2 | Logical Program Organization | 31 | | 5.1 | Objective Function vs Iterations | 57 | | 6.1 | Sensitivity Displacement to Length | 65 | #### ACKNOWLEDGEMENT I would like to express my gratitude to Professor Vanderplaats for his endless
patience and willingness to stop whatever he was doing and provide much needed assistance. His positive attitude and encouragement were a tremendous support. I would also like to thank my wife and children for their faith, encouragement, and prayers during the last six months. They provided much needed motivation to keep on plugging when things got sticky. Finally, I would like to thank the original Naval Architect, who delivered to Noah the first set of design requirements and ship's plans. Thank you Father in Heaven for granting me Your strength, wisdom, and patience. THE REPORT OF THE PARTIES OF THE PARTIES. ## I. INTRODUCTION #### A. BACKGROUND In today's environment of rapidly increasing costs, technological complexity, and growing threats, we must actively pursue ways in which to improve the effectiveness with which we apply the limited resources available to the design of naval combatants. Currently, the design process, from feasibility studies through keel laying of the lead ship takes almost a decade to complete. There is growing pressure to accelerate this process wherever possible in the design sequence. Inflation appears to be the primary motivator for this pressure; as we can look to painfully expensive examples of construction projects, which when delayed for whatever reason resulted in increased costs without significant platform improvements as compensation. The naval architect and naval engineer involved in the design process today can turn to the high speed digital computer for a viable means of reducing the time required for the design process and thereby achieve significant monetary gains while maintaining or improving the quality of the design product. The goal of "best ship at least cost" and the "computer revolution" have resulted in a very successful software development effort within naval research activities. Reference [1] provides a catalog of computer-aided design and construction (CASDAC) programs currently used by the Naval Sea Systems Command. The programs range from routines used for data management to complex synthesis model and arrangements packages. The design of naval vessels can be categorized into three major phases. These are: - 1. Conceptual Design - 2. Preliminary Design - 3. Contract Design At each phase, the ship is defined in greater detail than the previous phase. Conceptual design can be further subdivided into two components; 1) the feasibility study and, 2) the concept design. These too, represent levels of design detail with feasibility studies being the first and the crudest estimate of the ship, and concept design being the development and optimization of a single or several ships selected from feasibility studies. Mills, in [Ref. 2], defines feasibility studies as "...an estimate of the ship system level physical characteristics and cost related data for a design which represents a feasible solution to a specific set of performance requirements." Restated, a feasibility study is a shortcut estimate of a ship's principal characteristics, machinery systems and various coefficients which when taken as a whole, are a feasible solution to the owner's specifications or desires. Feasibility studies can be used for trade-off studies where new designs are evaluated; for subsystems trade-off studies, i.e. how different propulsions systems might work in a DD-963 hull, for evaluating changes in design standards and practices, or for determining an optimum feasible design with which to start the preliminary design phase. It is evident from the brief descriptions above that large numbers of feasibility studies are required to satisfy all of the designers needs. This demand for volumes of output and information has resulted in feasibility studies being successfully computerized in the form of synthesis models. A synthesis model is an engineering design procedure for converting a set of requirements into the physical description of a ship which can satisfy those requirements. The ultimate result of using the synthesis model as a design tool is the ability to produce a far more detailed and accurate design earlier in the design sequence, thereby saving precious time and money and providing more reliable guidance in the design selection process. #### B. PROBLEM STATEMENT The main problem, simply stated, is that the design of naval surface combatants must be accomplished as quickly and as inexpensively as possible to prevent inflationary over-runs and technology lag. The past three decades have provided numerous examples of the consequences of "too long" and too much." This thesis is intended to provide the designer a tool with which he can confidently accelerate the conceptual design phase and still produce high quality designs. The synthesis system will further free the designer to try innovative design concepts heretofor stymied by the burden of manual calculations and routine decisions. #### C. SCOPE The purpose of this thesis is to couple two existing computer programs; a naval surface combatant synthesis model [Ref. 3], and a general purpose non-linear optimizer [Ref. 4], to produce a synthesis system which will further enhance the ability of the naval architect during the conceptual design phase. Instead of using a synthesis model to generate hundreds of designs and then manually selecting one which appears to be the "best," the synthesis system will let the computer make the decision based on the limitations or constraints, and design requirements, coded in mathematical terms. This process may be illustrated using the traditional design spiral. Synthesis models currently in use reflect a computerized version of the spiral which iterate until they converge to a feasible design or diverge and terminate with no design. Figure 1.1 illustrates this concept. Figure 1.2 presents the optimizer/synthesis cycle proposed in this thesis. Here only one cycle is generated in the spiral with Figure 1.1 Traditional Design Spiral. Figure 1.2 Optimized Design Spiral. the optimizer changing design variables to meet the requirements of the design simultaneously with the calculations around the path. Differences between the desired and calculated values of specified parameters are treated as constraints which the optimizer works to satisfy. As can be seen graphically, much time and computational effort has been saved as a result of this process. It must be emphatically stated at this point that the synthesis system is a design tool, as are the individual synthesis model and the optimizer routine, and all of them must be used carefully with considerable common sense and good engineering judgement. The benefits of such a system are manifold and represent some of the best aspects of the individual programs. Several are listed below. - 1. An automated, optimized synthesis system further reduces the computational time necessary to do a feasibility study. - 2. The results are consistent throughout the design with the computer making decisions and calculations as a matter of routine. This consistency is important when considering designs of radical character. - 3. The results are more comprehensive. The synthesis model produces detailed output of essential data while the optimizer generates an easily traceable optimization trail, from which any design other than the optimum may be selected and evaluated. - 4. The ability to conduct studies on designs optimized with respect to different design objectives, i.e. minimum displacement versus minimum cost, while maintaining the same repeatable design practices and standards. 5. And finally, the freedom to be innovative and creative in design as a result of no longer being tied to long, tedious manual calculations. #### D. PRESENTATION OF THESIS The remaining chapters of this thesis are outlined as follows. Chapter II presents a brief background on the optimization methods used in the COPES/CONMIN optimizer. A two variable design example is presented as an illustration to further highlight the optimization procedures. Chapter III is a summary of the Reed synthesis model's salient features including logical program flow and a brief description of the program's subroutines. Chapter IV presents the modifications that were necessary in the Reed model to couple it with the COPES/CONMIN optimizer. Constraints that were added are justified and presented. Chapter V is a short design example using mission requirements similar to those of an FFG-7 as a baseline design. The example is used to present arguments supporting selection of objective functions and design variables. Chapter VI presents design examples using different objective functions and comments on the merits of the synthesis system. Chapter VII offers conclusions and recommendations. Appendix A is a computer listing of the design example presented in Chapter V. Appendix B is a listing of the elements in the GLOBCM COMMON block, identifying their global locations and meanings. Appendix C is a listing of nomenclature used in this thesis. # II. OPTIMIZATION TECHNIQUES #### A. INTRODUCTION This chapter will present some of the fundamental concepts and definitions required to understand the optimization methods used in the COPES/CONMIN optimization program. COPES/CONMIN is then discussed in brief and a short two variable design example is presented to illustrate the methods used in determining the optimum solution. The explanations are necessarily short as it is assumed that the reader is already familiar with optimization methods. Should further details be desired, Fox [Ref. 5] and Himmelblau [Ref. 6] are very good texts which may be consulted. #### B. DEFINITIONS. It is important to define several key terms used in the optimization problem formulation. These are: Design variables—The parameters for which values are to be chosen in producing a design will be called design variables. In the conceptual ship design phase these might be length, speed, beam to draft ratio, length to beam ratio, block
coefficient, etc. Design variables may be constrained to a limited range, i.e. 300 to 700 feet for the length between perpendiculars, or they may take on any value. Objective function—The single valued function with respect to which the design is optimized is called the objective function. Selection of the objective function can be one of the most important decisions in the design process. For ship designs, parameters such as displacement, economic measures of merit, speed, structural member fabrication costs and weight may be used. It is also possible to combine several important parameters to form a weighted combination which is to be optimized. This procedure is discussed extensively by Leopold and Reuter [Ref. 7]. Constraints—The design restrictions which must be satisfied in order to produce an acceptable design are collectively called constraints. In the design of a ship, many constraints are specified by the owner prior to any calculations being done. Some of these may be maximum navigational draft, maximum or minimum length or displacement, and certainly some measure of stability. If a parameter is beyond the value of a specified constraint, the constraint is said to be violated. Infeasible Design -- A design in which constraints are violated is called an infeasible or unacceptable design. Feasible Design -- A design which satisfies the specified constraints is called a feasible or acceptable design. Side Constraint -- A constraint which restricts the range of a design variable for reasons other than the direct consideration of performance is called a side constraint. A side constraint in the design of a ship may be the minimum length or draft. ### C. COPES/CONMIN The COPES/CONMIN optimization program is a general purpose, non-linear optimizer capable of handling large, constrained problems. It has been successfully used in connection with aircraft synthesis models [Ref. 8], structural optimization [Ref. 9], airfoil design [Ref. 10], and numerous other engineering applications. Although the code itself is very sophisticated, the primary methods of optimization used are conjugate directions for locally unconstrained problems and feasible directions for locally constrained problems. It solves the general non-linear optimization problem stated as follows: Minimize OBJ = $$F(\underline{X})$$ 2.1 subject to; $G_{\underline{i}}(\underline{X}) \leq 0$ for $i = 1, m$ 2.2 $X_{\underline{i}}^{\ell} \leq X_{\underline{i}} \leq X_{\underline{i}}^{u}$ for $i = 1, n$ 2.3 where OBJ is the objective function. The vector \underline{X} contains the "n" design variables. $G_{\underline{i}}(\underline{X})$ define the constraints imposed by the designer on the optimization problem and "m" is the total number of constraints. $F(\underline{X})$ and $G_{\underline{i}}(\underline{X})$ may be either implicit or explicit functions of the design variables \underline{X} , but must be continuous. The variables $X_{\underline{i}}^{\ell}$ and $X_{\underline{i}}^{u}$ define the lower and upper bounds, respectively, on the design variable X_i and are the limits over which $F(\underline{X})$ and $G_i(\underline{X})$ are defined. The n-dimensional space spanned by the design variables X is referred to as the design space. As stated previously, any design which satisfies the inequalities of equation 2.2 is referred to as a feasible design. If the design violates one or more of the inequalities, it is said to be infeasible. The minimum feasible design is said to be optimal. The optimization program begins with an initial \underline{X} vector which is input to the program and may or may not define a feasible design. The optimization process then proceeds iteratively by the following recursive relationship: $$\underline{X}^{(q+1)} = \underline{X}^{(q)} + \alpha * \underline{S}^{(q)}$$ 2.4 where q is the iteration number, vector \underline{S} is the direction of search in the n-dimensional design space, and $\alpha*$ is a scalar which defines the distance of travel in the direction \underline{S} . The optimization process then proceeds in two steps. The first is the determination of a direction \underline{S} which will reduce the objective function without violating constraints. The second is the determination of the scalar α^* so that the objective function is minimized in this direction, a new constraint is encountered, or a currently active contraint is encountered again. Consider for example, a hypothetical problem in which we wish to minimize the displacement of a naval combatant in terms of two design variables; length between perpendiculars (LBP), and the length to beam ratio (L/B). There are also two constraints for this problem: constraint G1 requires that the calculated full load displacement is equal to or greater than the displacement estimated by an empirical formula, and constraint G2 requires that, in a similar manner, the calculated vertical center of gravity be greater than or equal to the empirical estimation. Figure 2.1 is a graphical representation of such a problem showing the contours of constant objective function value as well as the constraint boundaries. Assume that a design at point A is given so that initially no constraints are active or violated. The program then begins by initially perturbing each of the \underline{X} variables to determine its effect on the objective function (full load displacement). That is, the gradient of the displacement function is calculated by the finite difference method. Because no constraints are violated or active, it is obvious that the greatest improvement in the objective function is obtained by moving in the negative gradient or steepest descent direction so that $\underline{S} = -\underline{V}(DISPFL)$. Having determined \underline{S} , the scalar $\alpha*$ in equation 2.4 must now be determined so that either the objective function is minimized in this # TWO VARIABLE DESIGN SPACE L/B RATIO VS. LBP Figure 2.1 Two Variable Design Space Example. direction or some constraint boundary is encountered. A one-dimensional search is done in the direction \underline{S} to determine the appropriate value for $\alpha*$ so that an improved design can be achieved at point B. No further improvement can be achieved in this direction as the constraint G1 is encountered. Now a search direction must be found which will reduce the objective function without violating the displacement constraint, G1. Such a direction can be found by solving a linear programming subproblem with a single quadratic constraint. The details of such a problem are given in [Ref. 9] and [Ref. 11]. The goal of the subproblem is to find a search direction which will minimize the objective and yet not violate any constraints. If no such direction exists, then the current point is considered optimal or at least a local minimum. In the example, a direction can be found and the design proceeds from point B to point C where constraint G2 is encountered. The subprogram is solved again, resulting in a further reduction of the objective and an active constraint at point D. From point D, the one-dimensional search yields a solution at point E in Figure 2.1 which is the vertex of the two constraints. Once again the design variables are perturbed to obtain the gradient of the objective and both active constraints, thus the linear subproblem is solved. This time the solution is zero, indicating the optimal design has been achieved. Point E is clearly the optimum since no direction exists at this point which will reduce the objective function any further without violating one or both of the constraints. For preliminary designs, it is often quite possible for the initial design to start in the infeasible region. Logic is included in the optimization program so that if this situation occurs, a direction vector S is obtained which will point toward the feasible region with a minimal increase in the objective function. The methods used in this example are, in principle, directly extendable to the n-dimensional problem. Also, additional constraints can be imposed without increasing the complexity of the design process. For the Reed/COPES/CONNETS system it appears that the optimizer is comprehensive enough to easily handle all the design variables and constraints the designer could possibly want without any significant increase in computational time. Also, ship designs are noted for their condition of flat-laxity in terms of similar ships having similar dimensions and design parameters. This condition increases the probability of the optimizer achieving an optimal solution. # III. SHIP SYNTHESIS MODELS #### A. HISTORY As stated in Chapter I, a synthesis model is an engineering procedure which converts a specific set of performance requirements into the physical description of a ship which satisfies those requirements. There have been several synthesis models available for the naval ship designer since the late 1960's. Two of these models, currently used by the Navy, were the primary reference sources for the development of the Reed model used in this thesis. They are the U.S. Navy's destroyer model DD07 [Ref. 2] and Center for Faval Analysis Conceptual Design of Ships Model (CODESHIP) [Ref. 3]. A third model developed by the Coast Guard patterned primarily after the DD07 synthesis model was also used as a reference in constructing the Reed model [Ref. 12]. The destroyer model, DD07, was first developed in the 1960's and has been continually updated since then. This model was developed to represent only U.S. destroyer type ships. The general framework for the method of analysis used in the CODESHIP model was also conceived in the sixties at the Center for Naval Analysis. CODESHIP was created to model ships which range in size from patrol craft to aircraft carriers. Because of the wide range of ship types in the data base, the CODESHIP model is not as accurate in predicting actual values as a model designed for a
specific ship type, e.g. DD07 for surface combatants. The greatest asset CODESHIP provided in the development of the Reed model was its highly versatile input and output features. #### B. REED MODEL DESCRIPTION The Reed model used in this thesis was developed to provide a more versatile synthesis model than CODESHIP and DD07. Specifically, the model allows the designer to control the design standards and practices to which the ship is designed and to observe the resulting ship characteristics from a more functional level than existing models provided. Although based on standard calculations derived from functionally similar ships, the designer is still given the opportunity to be flexible in his selection of values reflecting different design standards and practices. The resulting synthesis model enables the user to explore a significantly greater number of design options and provides a greater freedom than previously allowed with manual calculations or even other synthesis models. The Reed model has been used at the Massachusetts Institute of Technology since 1976. The primary purpose for the use there has been academic, although the results the model produces are certainly consistent with current design practices. In addition to its applications during conceptual design, the Reed model can also be used during later design phases as a design aid for updating predictions, and as a tool for conducting comparative naval architecture studies. The Reed model is limited to surface displacement ships configured as naval combatants. The data base was created using ships which ranged in full load displacement from 1,770 to 16,294 tons and which had lengths between perpendiculars of 301 to 700 feet. No cost characteristics are calculated by the model. #### C. REED MODEL ORGANIZATION The Reed model, as it was received, is controlled by a main program. The main program calls the various subroutines as required to calculate information for output and to let program execution proceed. Program control organization is shown in Figure 3.1. The logical program organization or program flow is shown in Figure 3.2. The program begins by reading the following data: - 1. Names of items to be printed in the output, - 2. Residual resistance coefficient values taken from the Taylor Standard Series [Ref. 13], and - 3. Data for all the items in the payload shopping list. If more than one ship is to be run, the specifications for the second ship are then read using subroutine DATA2. Figure 3.1 Reed Model Program Organization. Figure 3.2 Logical Program Organization. Following this, the main program calls subroutine SPAYLD which is used to sort the weights of the payload items input and place them in the proper BSCI¹ weight groups. The value of WPAYIN, the total weight of payload input, is calculated and is used for the initial estimation of the full load displacement, should the length between perpendiculars (LBP) not be specified. Next, the underwater hull shape is determined in the subroutine UWDIM. Values input to this subroutine are LBP, 2 free surface effect correction, Cp, Cx, GM/B, as well as the estimated KG and full load displacement. Output values from UWDIM are beam, draft, and Cwp. If the length between perpendiculars LBP, is not specified at the start of the program, it is calculated in the subroutine GEOM prior to transferring control to UWDIM. This feature was removed from the synthesis model when it was coupled to COPES/CONMIN and it is assumed that the designer will have a reasonable estimate of LBP to begin the design. Subroutine HPCALC is called to determine either the maximum sustained speed, VSUS, or the horsepower required at ¹BSCI--"Bureau of Ships Consolidated Index of Drawings, Materials, and Services, Related to Construction and Conversion" of February 1965 and given in an appendix to Reference [14]. ²Variables used in this thesis are described in Appendix C, Nomenclature. the maximum sustained speed, SHP. If VSUS is input, the HPCALC routine along with the CRVAL subroutine generate an estimate of the horsepower required to maintain the maximum sustained speed. If SHP is input, HPCALC is used to compute a corresponding VSUS through an iterative procedure. HPCALC is called a second time to find the horsepower required at endurance speed. Endurance speed must be input. Next, the subroutine EPLANT is called to calculate cruise, battle, and 24 hour average electric loads. Based on these estimates, the required number and size of the generators is determined. The electric loads and number of generators may be input, in which case these calculations will be by-passed. Subroutine MACHLQ is called to calculate machinery and other related liquid weights. Liquids considered machinery related are potable water, reserve feed water, lube oil, fuel oil, and diesel oil. These calculations are based on the military requirements of the ship. Liquid weights are used to determine the required tankage volume. MBSIZE determines the minimum depth of the machinery box which then corresponds to the minimum depth the ship must have amidships. The next step is to calculate the required and available volumes for the ship and to achieve a balance between the two. This is done in the VOLUME and SHEER subroutines. As most naval combatants are now considered volume-limited, this is one of the most important aspects of the synthesis model. The subroutine WEIGHT next determines the weights of all light ship and load items that are not payload-related. Full load displacement is calculated and it is then compared to the estimated value of displacement used to proceed this far in the program. If the two values are not within a specified tolerance, say 10 tons, the program reestimates displacement and iterates through all previous calculations. If the two values are within the specified tolerance, then the program continues on and compares the estimated and calculated values for the vertical center of gravity. In a similar manner, if the two values are within a specified tolerance, the program continues; if not, there is a new estimate generated and an iterative process proceeds until agreement is made. The vertical center of gravity is calculated in the subroutine VRTCG. If after a specified number of iterations, the comparisons for either displacement or vertical center of gravity are still not within the desired tolerances, the program prints an error message and terminates. At this point in the synthesis model, all essential calculations have been completed and the principal characteristics and coefficients of the "feasible" design have been determined. FNCGRP is called to place weights and volumes into their proper functional groupings as listed in Appendix C of Reference [15]. These groupings form a major portion of the detailed output from the synthesis model. The subroutine SEASPD calculates the speed the vessel is able to sustain in the North Atlantic Ocean in order that relative comparisons may be made of seakeeping characteristics. The final subroutine is OUTPUT which prints the input specifications first, followed by the payload items input, summary of results from the final estimate of principal characteristics, functional group results, BSCI weight listings, and the functional electrical loads. The OUTPUT routine is very versatile in that any portion of the above output may be supressed or printed as the designer desires. The above descriptions of the subroutines in the Reed synthesis model were designed to give the reader a general idea of how the program functions. The routines are described in much greater detail in [Ref. 3] and [Ref. 12]. The reader is encouraged to use these to make changes to the synthesis model or to gain a greater understanding of the program. #### IV. COUPLING COPES/CONMIN AND THE REED MODEL A. SELECTION OF DESIGN VARIABLES AND OBJECTIVE FUNCTIONS One of the most important decisions in the development of the synthesis system is the choice of parameters to be used as design variables and objective functions. Review of current literature pertaining to preliminary design synthesis and optimization models, [Ref. 16-22], produced two different approaches to the problem. Nowacki [Ref. 16], worked with a single economic measure of merit (required freight rate) for the objective function of tanker designs and used speed/length ratio, B/T, L/B, Cb, and L/D as design variables. Mandel and Leopold [Ref. 17], recommended that for tanker or general cargo vessels a three-term weighted optimization criterion be used as the objective function. One term would be an economic criterion, the second term would take into account payload weight and the third term payload volume. Both payload terms are based on the owner's requirements. They selected displacement, Cp, speed/length ratio, B/T and L/D as the five design variables. Leopold and Reuter [Ref. 7], carried the multiple term optimization criterion a step further in their paper on design methods and philosophies for the FDL, LHA, and DD-963. Here they proposed an optimization criterion containing seven terms; cost, effectiveness, flexibility, availability, habitability, vulnerability, survivability, innovation, and nonobsolesence. Through this was never expressed as a mathematical function, it indicates the attempts to quantify key parameters in optimization methods. apparent that some sort of economic measure of merit was the dominant objective function for commercial vessels. This is to be expected as profit is the motivation for construction and operation of a commercial vessel. Military vessels, specifically naval combatants, are not required to be profitable. Their mission is to deliver a military payload at a specified time and place and to provide military services when and where needed. Therefore, economic criteria, though certainly important, are not as vital to the designer as are the ability of the vessel to carry its military payload and perform its military
duties. In recent years, the naval combatant has become area/volume critical in nature. Accordingly, this has become the dominant factor in establishing the ship size. Taking into account the fact that volume is critical and that there exists an implicit relationship between volume and displacement, it was decided that displacement would be the most representative variable for the objective function. According to Manning [Ref. 22: p. 101], using least displacement as a measure of merit for the military versel gives the highest ratio of military payload to displacement. This selection is further supported by the fact that total ship cost can be roughly estimated by the displacement. The design variables selected for the Reed/COPES/CONMIN system were LBP, L/B, B/H, Cp, and Cx. These variables were selected by running sensitivity studies on displacement with respect to each design variable over a specified range of values. The payload and all other factors remained constant in this analysis as each design variable was tested. It is felt that these variables are the most significant in the determination of the principal characteristics and provide the designer with considerable flexibility for innovation. It should be noted that any one of the design variables may be designated as the objective function so that comparisons of designs with, say displacement as the objective function can be made with designs that may have used LBP or Cp as the objective function. Also, should the designer desire, he may designate any of the other variables used in the Reed model as objective functions and/or design variables. It is only necessary to ensure that the variable is listed in the GLOBCM statement. #### B. THE GLOBCM STATEMENT The GLOBCM COMMON statement is a requirement of the COPES/CONMIN program. All variables used as objective functions, constraints and/or design variables must be listed in the common statement and the statement must appear in each subroutine the variable is used in. It is used by the optimizer as a catalog to identify where the design variables, objective function(s), and constraints are, and what purpose they fulfill. In the Reed/COPES/CONMIN system the GLOBCM statement has DISPFL, full load displacement, and a 2500 element vector labelled S as entries. The S vector contains input parameters, payload items and quantities, BSCI weight group data, BSCI vertical center of gravity data, volume values for payload and input items, electrical load values, miscellaneous parameters and coefficients, and space for inputting any special payload items not included in the standard payload shopping list. DISPFL was added to GLOBCM because it was not in the S vector. All of the design variables used in this thesis are contained in the S vector. The element numbers are listed in Appendix B. #### C. CONSTRAINTS In order to couple the Reed model with COPES/CONMIN, it was necessary to make several major modifications to the synthesis program. In addition to the modifications, all default parameters were replaced by constraints. The main program in the Reed model had two iterative loops which were removed. The first loop occurred after all the weight calculations had been done. The purpose of this loop was to check to see if the calculated value for the full load displacement equalled the estimated value for displacement within a user specified tolerance. If the difference was not within the tolerance, the program would estimate a new value for displacement, calculate a new full load displacement and make the check again. The iteration continued until the check was satisfied or a maximum number of iterations was achieved at which time an error message was printed and the program terminated. This loop was replaced with a single constraint. The quotient of the calculated displacement to the estimated displacement minus one is required to be less than or equal to zero. $G1 = DISPFL/DPTRY - 1.0 \le 0.0$ The second loop in the main program is exactly the same as the first except that it compares the initial and calculated values for the vertical center of gravity (VCG). This loop was replaced with a constraint similar to the first using calculated VCG and estimated VCG. $G2 = CGFLD/KGTRY - 1.0 \le 0.0$ In the subroutine UWDIM, two default values were replaced by constraints. These defaults required that the beam to draft ratio be greater than two and less than four in order to use the residual resistance coefficients in the Taylor Standard Series tables. The constraints are: $G3 = 2.0/BTR - 1.0 \le 0.0$ $G4 = BTR/4.0 - 1.0 \le 0.0$ A third constraint is added here to satisfy a stability criterion. A variable R is introduced in the subroutine with a value of: R = KB + BM - GM - KG - FSCORR When R = 0, the stability criteria is just satisfied, therefore the constraint $G5 = -R/10 \le 0.0$ must be less than or equal to zero to ensure a stable design. R is divided by ten as a means of scaling in order that G5 will have the same relative magnitude as the other constraints. Subroutines HPCALC and CRVAL have the greatest number of constraints in them due to the limitations of the Taylor Standard Series power estimation. The maximum ranges for the input variables that are accepted are listed below: $2.0 \leq B/H \leq 4.0$ $0.48 \le Cp \le 0.70$ $0.001 \le Cv \le 0.006$ for $0.5 \le V/\sqrt{L} \le 1.3$ $0.001 \le Cv \le 0.003$ for $0.5 \le V/\sqrt{L} \le 2.0$ These are translated into the following constraints: $G3 = 2.0/BTR - 1.0 \le 0.0$ $G4 = BTR/4.0 - 1.0 \le 0.0$ $G6 = 0.48/Cp - 1.0 \le 0.0$ $G7 = Cp/0.70 - 1.0 \le 0.0$ $G8 = 0.5/SLRAT - 1.0 \le 0.0$ $XX = SLRAT/1.3 - 1.0 \le 0.0$ $G9 = 0.001/Cv - 1.0 \le 0.0$ $G10 = Cv/0.006 - 1.0 \le 0.0$ $G11 = SLRAT/2.0 - 1.0 \le 0.0$ $XXX = Cv/0.003 - 1.0 \le 0.0$ G12 = -1.0 IF ((XX .GT. 0.0) .and. (XXX .GT. 0.0)) G12 = 1.0 The remaining constraints appear in the subroutines VOLUME and SHEER. In the routine VOLUME, there was a loop which iterated to match the total estimated ship volume with the total calculated ship volume by increasing the deck house size or by adding a raised deck to the ship. This loop was replaced by the following constraint: $G13 = RSSV/DHV - 1.0 \le 0.0$ #### D. FURTHER PROGRAM MODIFICATIONS As stated previously, it is necessary for the operation of COPES/CONMIN to have the analysis portion (i.e. the synthesis model) of the program in subroutine form. The subroutine is called ANALIZ and has the calling parameter ICALC. When ICALC = 1, the data for the operation of COPES/CONMIN is read in. For ICALC = 2, all the analysis calculations are performed by the optimizer, and when ICALC = 3, the final results are printed out. Lines were inserted into the Reed program at the appropriate points to facilitate the operation of ANALIZ as stated above. In the stand alone form, the Reed model is capable of analyzing one or more ships as the designer desires. The Reed/COPES/CONMIN system will process only one design at a time. This is not considered a problem because changes to the input data files are made easily and the computational time for each run is short. Subroutine GEOM was deleted from the program. This subroutine calculated a LBP based on the weight of the payload when no LBP was input to the program. It is felt that the designer can estimate a LBP which the optimizer can start with and proceed to an optimum design. Extensive changes were made in the subroutine SHEER. It is assumed that the minimum depth amidships is the same or greater than the depth of the machinery box. This value is compared to LBP/16 and the largest of the two values is selected as the depth amidships. Having satisfied this criterion, an iterative routine was used to estimate the freeboard at the forward and after perpendiculars. The iterations were based on an assumption that sheer fractions of 0.01 and 0.03 forward and 0.001 and 0.0075 aft were esthetically and structurally satisfactory. If these fractions could not be met, the program printed an error message and terminated. This was changed so that when the depth amidships was established, the freeboard at the forward and after perpendiculars were assigned as: $$F0 = (0.03*LBP + D10) - H$$ $F20 = (0.0075*LBP + D10) - H$ respectively. These values are comparable to those produced by the Reed model alone and simplify the design process. Should different values be desired, it is only necessary to change the two equations. The Reed model was written giving the program the option to add a raised deck to the hull if the total required arrangements volume was greater than the total available arrangements volume. The option was deleted from the program and replaced by constraint G13. Should the designer wish to have a raised deck design, the calculations can be replaced but care must be taken to ensure that no design variables are altered by an internal loop, thereby shor;—cutting the optimizer. There were numerous small changes made to the Reed model to make the coupling of the two programs more efficient. They are, however, insignificant and will not be documented here. ### V. DESIGN EXAMPLE #### A. INTRODUCTION This chapter will present an example using the Reed/COPES/CONMIN synthesis system. It is assumed that the user is familiar with Appendix A, the User's Manual, of Reference [3] and the data description and input format for COPES presented in Reference [4]. The logic for the selection of the objective function, design variables, and constraints will be discussed as the method of problem presentation. #### B. EXAMPLE DESCRIPTION All designs start with the owner's requirements or in military terms, the Operational Requirements (OR). This delineates the military payload and mission to be accomplished over the lifetime of the ship. From the OR, the designer is able to select those parameters which will help him make an initial estimate of the ship, i.e. start the conceptual design phase. In this example, the operational requirements will be similar
to those of an AAW/ASW capable escort ship like the Oliver Hazard Perry class frigate. Mission requirements specified in the OR will generally dictate the type of equipment required in the design. Table 21 of Appendix A, [Ref. 3] can be used like a shopping list at this point. The designer can pick and choose the weapons systems, electronics suites, ammunition load-outs, preliminary liquid loads, and aviation items he desires to use. This list of items technically defines the military payload hardware. Additional men and materials are required to support and operate the payload. A partial list of payload items selected for this design example are listed in Table I. #### TABLE I #### Military Payload List FF(ASW command and control) Radio communications SPS-49 Radar w/IFF SPS-55 Radar w/IFF SQS-56 Sonar FF/FFG Basic ECM suite ASWC and C-FF-2C,7D Electronic Tactical Data Systems Vulcan/Phalanx on O1Lv 76mm Gun, 01Lv Mk-92 CIWS/STIR 800 3"/50 rounds 10000 20mm rounds Mk-13 Tartar Missile Launcher w/40 Missiles Mk-32 Triple Torpedo Tubes P/S w/24 Torpedos Harpoon FCS 1 Lamps MK III Helo with support Having made these decisions, which incidentally may have taken many, many weeks, the designer then proceeds to select those parameters which define the ship form. Here the designer has slightly more freedom than with the payload entries. It is possible to run systems trade-off studies comparing different propulsion plants, hull materials, and design standards. Items in this category come from Table 12 of Appendix A, Reference [3]. They are such things as type of propulsion plant desired, number of propellers, the endurance range and speed, geometric parameters such as length, L/B, B/H, coefficients of form, electric plant parameters, and crew accommodations. Up to this point in the process the synthesis model and the Reed/COPES/CONMIN system are essentially the same. To continue further with the synthesis model will require that relatively accurate values of the ship specifications be input. The Reed/COPES/CONMIN system on the other hand allows any starting value that is within the specified limits of the design variables. That is, it is possible to start with an entirely infeasible design and yet end up with a feasible design after optimization. This is one of the strengths of the synthesis system. From the specifications identified in this group of parameters, the designer selects the objective function(s). design variables, and constraints. He may also develop a function he considers viable as an objective function and insert it into the synthesis model. Table II lists those variables which must be input in the problem specifications. #### TABLE II #### Ship Specifications List | Sustained Speed | Emergency Electrical Plant Type | |-----------------------------|---------------------------------| | Endurance Speed | Type of ship heating | | Endurance Range | Fin Stabilizers (Y/N) | | LBP | Officers' Accommodations | | L/B | CPO Accommodations | | В/Н | Enlisted Accommodations | | Ср | Flag Accommodations | | Сж | Troop Accommodations | | Propulsion Plt Type | Passenger Accommodations | | Sustained SHP | Basic Hull Material | | Number of Main Engines | Basic Superstructure Material | | Number of Shafts | GM/B Stability Value | | Propeller Type | Design Margin | | Shaft Type | Free Surface Correction | | Ship Service Elect Plt Type | Passageway Type (P/S or CL) | #### C. PARAMETER DESCRIPTIONS Selection of the objective function in this example is based on the comments of Manning in Reference [22] and Saunders in Reference [23]. From Manning: "There are two criteria which may be used to measure the excellence of a design. The one usually applied to warships is that the best design is the one of least displacement. This design gives the highest value of the ratio of military load to displacement." Accordingly, it was decided to use displacement (DISPFL) as the objective function. The intent will be to minimize the displacement required to support the specified payload items and to use this as an indicator of relative size and cost when compared with other designs. DISPFL is listed in global location one in the GLOBCM statement and identified as the objective function to be minimized in data block E. Five parameters have been selected as independent design variables. The first is the length between perpendiculars. Justification for this selection is well stated by Saunders on page 343 of Reference [23]. "In the group of underwater form coefficients and parameters developed through the years, the ship length L logically appears as one of the principal dimensions. It is related directly and indirectly to the beam, the draft, the displacement weight, the displacement volume, and to many other factors." Length is designated by LBP and is in global location 5. The second design variable is the ratio of length to beam (L/B). Although the L/B ratio can be related to the prismatic coefficient, Cp, and the B/H ratio and is therefore not strictly independent, it has still been selected as a design variable. Motivation for this selection comes from the methods used in the Reed synthesis model to determine the beam and initial powering estimates. It may also be used as a weak measure of turning characteristics [Ref. 23: p. 352] and course tracking when comparing designs. The L/B ratio is in global location 6. The beam to draft ratio (B/H) is the third design variable. This ratio is used to determine the ship's draft and is used in estimating horsepower requirements. It is stored in global location 7. The fourth design variable is the prismatic coefficient, Cp. This coefficient indicates the fullness of the underwater hull and is therefore indirectly related to displacement. A small Cp means the ship has fine ends and a full midbody. A large Cp means full or blunt ends similar to a tanker or barge. Cp is in global location 8. The last design variable is the midship section coefficient. This relates the area of the midship section to a rectangle whose sides are equal to the draft and the beam at that section. It is used in estimating the hull strength and initial power requirements. It is located in global location 9. With the design variables identified it is now necessary to specify their global location in the GLOBCM statement and to specify any side constraints that may be imposed on the design variables. COPES data block F is used to specify side constraints and data block G provides COPES with the design variable number and global location. Design variables 1-5 are located in global locations 5-9. Table III presents the side constraints that are imposed as a result of the restricted data base used in the synthesis system. TABLE III Side Constraints on Design Variables | PARAMETER | LOWER BOUND | UPPER BOUND | |-----------|-------------|-------------| | LBP | 300 ft. | 700 ft. | | L/B | 7.00 | 12.0 | | В/Н | 2.00 | 4.00 | | Ср | 0.50 | 0.90 | | Cx | 0.75 | 0.90 | #### D. CONSTRAINT PHILOSOPHY It is worthy to philosophize a bit at this point about side constraints and about constraints in general. The constraints imposed on the design variables in this example are used to maintain the design within the specifications of the synthesis model data base. Extrapolation of designs based on data and on empirical relationships derived for the model is considered risky at best and would probably be better accomplished with manual calculations. Further, the design is constrained by the limitations of the residual resistance coefficient values of the Taylor Standard Series used in the horsepower estimations. The obvious point to be made is that as the synthesis system is constrained, so the designer is constrained. He cannot develop feasibility studies for aircraft carriers or air cushion vehicles with a destroyer synthesis model. Also, he cannot justifiably try radically different design concepts for a destroyer if the concepts render the data base invalid. The manner in which the designer attacks this problem is an indication of his creativity and foresight. Improvement in the synthesis system is certainly an option to help eliminate some of the constraints required. For this synthesis model, the resistance coefficients could be expanded through the testing of ship models whose size is larger than those used to obtain the Taylor Standard Series data. This is an expensive and time consuming process and must be considered carefully in light of what is desired from the synthesis system. Again, the designer's ability to use the synthesis system as a tool is the key to his success. Hypothetically, a synthesis system should be designed to model real world conditions and require only those constraints imposed by the real world, i.e. no negative areas or plate thicknesses. The Reed model is considered an excellent synthesis model and requires relatively few constraints to maintain real world conditions. In some problems, it is necessary to use constraints to prevent the optimizer from exploiting a weakness or undesirable trend in the analysis portion of the code. This is not the case with this system and this point is mentioned only in passing should the designer desire to make significant alterations to the synthesis model. Having briefly discussed constraints, it is now appropriate to identify them specifically and illustrate how they are delineated in the COPES data cards. In Chapter IV thirteen constraints (G1-G13) were proposed to replace several iterative loops and termination criteria built into the original Reed model. All of these constraints are satisfied when they have a value less than or equal to zero. These constraints were assigned unused numbers in the S vector and occupy global locations 77 through 89. All of the constraints together form a constraint set as they are all of the same magnitude and are satisfied by meeting the same criteria. Data block H is used to specify the number of constraint sets, in this case one. Data
block I identifies the first and last global locations of the constraint set, 77 and 89, and specifies the upper and lower bounds and any scaling desired for the constraints. For this example, the upper bound is zero, the lower bound is numerically minus infinity and the scaling value is defaulted to 0.1. Should any further constraints be desired the designer need only identify them in the <u>S</u> vector, specify their global locations, their upper and lower limits and any scaling necessary via the appropriate data blocks. Table IV is a listing of the COPES/CONMIN data blocks illustrating the entries described above. #### TABLE IV #### COPES/CONMIN Data Blocks ``` $ BLOCK A OPTIMIZED VERSION OF THE FFG-7 $ BLOCK B 2,5 $ BLOCK C 3,,,10,,,50 $ BLOCK D 0.,,-0.02 0., $ BLOCK E 0,1,-1.0 $ BLOCK F LBP 300.0,700.0 L/B 7.0,12.0 B/H 2.0,4.0 Сp 0.50,0.90 Cx 0.75,0.90 $ BLOCK G 1,5 2,6 3,7 4,8 5,9 $ BLOCK H $ BLOCK I 77,89 -1.0E+15,0.0,0.0,0.0 $ BLOCK V END ``` #### E. EXAMPLE RESULTS The results of this example are best presented in tabular form. Table V illustrates the initial and the optimum values for the objective function, design variables, and constraints. Note that the initial design was infeasible with constraints G1, G2, and G13 violated. Physically, this meant that the initial design was unstable (G2) as a result of insufficient volume (G13) and displacement (G1) to support the required payload. The optimizer increased the displacement by manipulating the design variables until all the constraints were satisfied. Constraint G13 is indicated as active, which means that it lies within a specified tolerance value of the constraint zero value boundary. TABLE V Initial and Optimum Parameter Values | PARAMETER | INITIAL VALUE | OPTIMUM VALUE | |---------------------------|--------------------|-------------------| | Objective Function DISPFL | 2865.05 | 3511.68 | | Design Variables | | | | LBP | 300.0 | 394.38 | | L/B | 9.07 | 8.76 | | B/H | 3.14 | 3.32 | | Ср | 0.59 | 0.50 ¹ | | Cx | 0.75 | 0.77 | | Constraints | | | | G1 | 6.22 ² | -0.015 | | G2 | 1.85 ² | -0.068 | | G3 | -3.63 | -0.398 | | G4 | -2.15 | -0.168 | | G5 | -7. 85 | -2.062 | | G6 | -1.90 | -0.040 | | G 7 | -1.52 | -0.285 | | G8 | -5.66 | -0.503 | | G9 | -5.57 | -0.501 | | G10 | -6.23 | -0.665 | | G11 | -4.22 | -0.496 | | G12 | -10.0 | -1.000 | | G13 | 11.86 ² | -0.0006³ | ¹ lower bound of design variable ²violated constraint Figure 5.1 is a graph of the objective function versus the number of iterations required to reach the optimum. It can be seen that the optimizer is indeed efficient and in this example arrived at a value very near the optimum in five iterations. The remaining four iterations were done simply to "fine tune" the value of the objective function. The average run time for this example was approximately two and one half CPU second on an IBM 3033 system. The entire example with values for all the parameters at each iteration is provided in Appendix A. Comparison of the data arrived at in this example using the general specifications of the FFG-7 were very good. Displacement was within five percent of the actual ship displacement. Most of the other parameters were within at least ten percent of the actual and could have been made more accurate by greater detail in the problem specifications. # OPTIMIZATION HISTORY DISPLACEMENT VS ITERATIONS Figure 5.1 Objective Function vs Iterations. ## VI. SYNTHESIS SYSTEM APPLICATION #### A. DESIGN EXAMPLES USING DIFFERENT OBJECTIVE FUNCTIONS The Reed/COPES/CONMIN system is extremely versatile in application. The designer is able to optimize a design for a specific payload with respect to a larger number of important and different parameters. One example has been shown using DISPFL as the objective. LBP could be used as an objective function. Based on the relationship between length and displacement, the designer would minimize length. Another parameter that could be used is SHP/TON. designer would maximize this function in an effort to get the most horsepower in the smallest ship. Table VI presents several examples which were optimized with respect to different objective functions. The baseline ship is a close approximation to the FFG-7 ocean escort. The same design variables were used in all cases. The constraints were not altered and the payload was also maintained constant. Data produced by the original Reed synthesis model is included for comparison. Several general comments can be made from an overall view of the data. First, is that there appears to be a rather well defined optimum ship regardless of the objective function. This supports the so called "flatlaxity" of ship designs [Ref. 16: p. 105] which allows the optimum ship to TABLE VI 2.79 418.00 43.06 30.83 0.59 0.75 15.45 11.19 9.71 15.81 0.10 0.20 3575 FFG-7 REED MAX VPA/VOL 43.02 28.65 394.38 0.50 0.76 14.52 15.63 11.39 9.17 2.96 0.20 0.11 3513 MAX WPA/FLD 45.17 28.56 11.39 0.50 8.73 3.32 15.62 0.20 Comparison of Different Designs 394.41 0.77 13.61 0.11 3512 MAX FLD DEN 2.19 0.19 0.75 21.14 10.86 29.04 19.45 0.08 46.27 502.57 0.61 8.41 4754 MAX SHP/TON 13.48 8.76 28.56 394.38 45.02 0.50 3.33 15.62 0.77 0.11 0.20 3511 47.22 0.79 11.38 0.50 14.78 8.35 3.20 15.63 0.20 394.26 28.57 0.11 3514 MIN LBP 28.56 MINDISPFL 394.39 45.03 13.54 8.76 15.62 11.39 0.50 3.33 0.20 0.77 0.11 3511 PARAMETER WPAY/FLD FLD DENS VPAY/VOL SHP/TON DISPFL DRAFT Nsns BEAM L/B B/H LBP č Cb have slightly different principal dimensions yet remain optimum or very nearly so. The second comment is on the consistency of the synthesis system. When compared with the original synthesis model results, the optimized results accurately reflect the effect of changing the design variables to satisfy the design requirements. Additionally, specific parameters demonstrate excellent repeatability from design to design. This indicates that the final design is the optimum and not a relative maximum or minimum point in the design hyperspace. The above comments are well supported by the data in Table VII. This data represents four designs: one starting with LBP equal to 300 feet, one with LBP equal to 500 feet, one with LBP equal to 700 feet, and a fourth design using parameters from the optimum design achieved with LBP equal to 300 feet. All cases were run with DISPFL as the objective function and all other parameters held constant run to run. Excellent repeatability and a well defined optimum are demonstrated. A third and interesting point to note is that not all selected objective functions or variables are affected by the optimization process. Note the value of VPAY/VOL (Volume Payload/Total Volume). To bring about a change in this variable, the synthesis model msut be changed. This represents a change in the design standards or the designer's ABLE VII Repeatability of Data | PARAMETER | 1N1T
300 | 0PT
300 | INIT
500 | OPT 500 | INIT
700' | OPT
700' | OPT 394. | |-----------|-------------|------------|-------------|---------|--------------|-------------|----------| | TBP | 300.00 | 394.39 | 500.00 | 394.53 | 700.00 | 394.45 | 394.35 | | BEAM | 33.08 | 45.03 | 55.13 | 43.21 | 77.18 | 42.41 | 43.72 | | DRAFT | 10.53 | 13.54 | 17.56 | 13.61 | 24.58 | 13.59 | 13.03 | | ďე | 0.59 | 0.50 | 0.59 | 0.50 | 0.59 | 0.53 | 0.50 | | Cx | 0.75 | 0.77 | 0.75 | 0.75 | 0.75 | 0.75 | 0.80 | | В/Н | 3.14 | 3.33 | 3.14 | 3.17 | 3.14 | 3.12 | 3.36 | | L/B | 9.07 | 8.76 | 9.07 | 9.13 | 9.07 | 9.30 | 9.02 | | Nsus | 34.06 | 28.56 | 28.87 | 28.60 | 25.88 | 29.09 | 28.55 | | DISPFL | 2865 | 3511 | 4899 | 3512 | 9766 | 3523 | 3510 | | FLD DENS | 13.40 | 15.62 | 16.85 | 15.52 | 12.35 | 15.66 | 15.61 | | SHP/TON | 13.96 | 11.39 | 8.61 | 11.39 | 4.10 | 11.35 | 11.39 | philosophy. The ability to be able to make such alterations is an indication of the strength and flexibility of the synthesis model. A particularly good example of another such change is with regard to habitability requirements, i.e. ft³/man. Current designs have shown an increasingly large portion of internal volume devoted to habitability. It is possible through the use of scale factors to modify current design standards established for habitability and to determine the effect on the overall ship design of changes in these standards. An excellent example of this feature is presented in Reference [3] where an FF 1052 class frigate is redesigned using Soviet habitability standards and then compared to the actual frigate design. the optimum is the one in which the objective function was full load density (FLD DENS). Here the objective function was to be maximized. The units of full load density are lbs/ft³ and are therefore a measure of how dense the ship is. The difference between this design and the others is significant and leads to a consideration of which is more efficient from a space utilization standpoint. It would be a logical assumption that the larger ship could support a bigger payload more efficiently. Yet, is this the better design? The designer must remember that the synthesis system is a design tool and he must be judicious in the application of engineering judgement and common sense. Optimization cannot be blindly applied to a problem and the results accepted at face value. Clearly, other considerations would be necessary to choose between this and one or more of the other designs. As with the example in Chapter V, all the designs began in the infeasible region and proceeded to a feasible design. This feature is of great benefit to the designer as numerous designs that the synthesis model would have rejected and required new information for are simply tried and identified as infeasible on the path to a feasible design. The synthesis system maintains a record of all the designs tried which the designer may scrutinize and use for future design decisions or historical data. The system also identifies those constraints and design variables that are active or violated, thus
providing the designer information on what is most critical in the design. #### B. SENSITIVITY STUDIES It is possible to generate sensitivity studies with the Reed/COPES/CONMIN system. Once the designer has identified a design he wants to work with, he is capable of determining the effect of varying a single parameter at a time while maintaining all other parameters constant. This was one of the first forms of preliminary design optimization used and is described in the landmark paper by Murphy, Sabat, and Taylor in 1965 [Ref. 15]. This feature was especially helpful in determining the design variables and objective functions to be used in this thesis. Figure 6.1 illustrates a simple example where the optimum design minimized with respect to displacement is checked for sensitivity to variation in length. Note that while displacement can be reduced further by making the LBP less than 394 feet, this violates one or more constraints. #### C. SYSTEM TRADE-OFF STUDY An important and useful application of the synthesis system is systems level trade-off studies. The Reed/COPES/CONMIN system allows these studies to be conducted with consistency and confidence as the computer makes routine decisions and calculations the same in all cases. Table VIII presents data from a systems level trade-off study done on different types of propulsion plants. The second generation gas turbine (2 LM2500's) appears to be the best design while the steam and diesel plants are all comparable. Surprisingly, the COGAS plant appears to be the worst of the designs studied. This may be because the data used to synthesize the COGAS design may be dated and needs to be revised. As in the other examples presented in the thesis, the payload requirements for these ships are similar to an FFG-7 class frigate. There are considerably more applications available with the Reed/COPES/COMIN system which have not been explored. # SENSITIVITY ANALYSIS DISPLACEMENT VS LBP Figure 6.1 Sensitivity Displacement to Length. TABLE VIII Systems Trade-off Study on Propulsion Plants | _ | | | | | | |-------------|-----------------|------------------|----------------|-----------------|----------------| | PARAMETER | STEAM
600 lb | STEAM
1200 1b | GAS
TURBINE | DIESEL
PLANT | COGAS
PLANT | | LBP | 417.49 | 418.86 | 394.33 | 416.84 | 468.74 | | BEAM | 53.81 | 53.96 | 46.85 | 47.70 | 59.64 | | DRAFT | 14.51 | 14.56 | 13.52 | 13.47 | 18.18 | | Ср | 0.52 | 0.52 | 0.50 | 0.50 | 0.51 | | Сж | 0.80 | 0.80 | 0.79 | 0.90 | 0.76 | | VCG FLD | 16.58 | 16.68 | 15.40 | 16.13 | 15.20 | | L/B | 7.76 | 7.76 | 8.42 | 8.74 | 7.86 | | В/Н | 3.71 | 3.71 | 3.46 | 3.54 | 3.28 | | Vsus | 28.46 | 28.52 | 28.52 | 28.29 | 28.23 | | DISPFL | 4129 | 4164 | 3511 | 4110 | 5558 | | DISPLS | 2991 | 3029 | 2471 | 3091 | 3294 | | FLD DENS | 16.85 | 16.99 | 15.61 | 15.93 | 21.97 | | WPAY/FLD | 0.09 | 0.09 | 0.11 | 0.09 | 0.07 | | WPER/FLD | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | | VOLPAY/VOL | 0.19 | 0.19 | 0.20 | 0.18 | 0.18 | | VOLPERS/VOL | 0.20 | 0.20 | 0.22 | 0.19 | 0.20 | | VMB/SHP | 3.52 | 3.52 | 2.40 | 4.26 | 2.40 | | SHP/DISPFL | 9.69 | 9.61 | 11.39 | 9.73 | 7.20 | COPES/CONMIN is capable of performing optimum sensitivity studies, two variable function space studies, and approximate optimization techniques. Additionally, numerous combinations of variables and design standards are available in the Reed model. The examples presented here and in the previous chapters just begin to illustrate the utility of such a design tool. #### VII. CONCLUSIONS AND RECOMMENDATIONS The Reed/COPES/CONMIN system provides the naval architect with an efficient design tool, with which he is capable of reducing the time required to perform feasibility and concept design studies. The designer has at his fingertips all the benefits of a sophisticated synthesis model which has been proven to produce reliable designs, as well as the power of a nonlinear numerical optimizer. Combined together, the synthesis/optimizer system enables the designer to be more exhaustive in his search for a design solution at no greater cost in time. A greater number of design alternatives can be processed and compared as a result of the synthesis system's ability to start with an infeasible design and develop it into a feasible design. The designer is made aware of the design variables and constraints which are critical in each case and has the ability to alter those and other variables to achieve his goals. In addition to being computationally fast, the synthesis system is very versatile. The COPES/CONMIN optimizer is capable of doing optimization analysis, sensitivity studies, optimum sensitivity studies, and optimization using approximation techniques. The Reed synthesis model is capable of accurate conceptual design calculations of greater detail than previously attempted in synthesis models. It allows for changes in design standards and philosophies as well as equipments and characteristics. Studies conducted using various combinations of features available from both programs greatly enhance the information available to the designer at any time. There are several areas where further development would be desirable. The first is the addition of a cost estimating routine. This module could include lead ship and follow on ship acquisition costs as well as life cycle cost analysis. This would provide a second very significant variable to use as the objective function and would certainly be in line with the current philosophy of "design to cost." The second feature would be a topsides arrangement routine. Naval surface combatant design has become sensitive to this area and in some cases the designs are driven by the requirements for deck area necessary to operate electronics and weapons systems. A feature that could be coupled with the above routine and used during the concept design phase would be a graphics module. There currently exist programs capable of generating rough hull forms with less information than the synthesis model is capable of providing. The British have developed software which will interactively, with the designer, develop the ship's arrangements and deckplans [Ref. 24]. A final possibility in the graphics area would be to develop a data base of three to five surface combatant hull forms which may be expanded, contracted, or mixed to achieve a desired hull form. This is similar to the approach taken with hydrofoil design synthesis and would provide the designer with additional design flexibility [Ref. 25]. Minor changes to the synthesis program could be made. Payload items used on naval combatants are continually changing, the items in the payload shopping list [Ref. 3], should be reviewed and updated as part of a periodic program maintenance action. In conclusion, it is felt that the optimizer/synthesis system is a design tool which can, when properly used, significantly improve the quality of feasibility studies without increasing the time required to accomplish the studies. As computer hardware and software improve, the design procedure outlined in this thesis will become more commonplace and as a result the designers will further benefit by designs which are developed computationally to a much greater degree of detail than is currently observed at any given phase of design. #### LIST OF REFERENCES - 1. Navsea T0800-AA-RPT-010/CASDAC, "CASDAC, Abstracts of Computer Programs," Commander, Naval Sea Systems Command. 1981. - 2. Mills, J., Feasibility Studies and Ship Synthesis Models, Lectures 7, 8, 9. Unpublished lecture notes for professional summer at Massachusetts Institute of Technology. - 3. Reed, Michael Robert, Ship Synthesis Model for Naval Surface Ships, Master's Thesis, Massachusetts Institute of Technology, May 1976. - 4. Madsen, Leroy E., and Vanderplaats, Garret N., COPES-A Fortran Control Program for Engineering Synthesis, NPS69-81-003, Naval Postgraduate School, March 1982. - 5. Fox, Richard L., Optimization Methods for Engineering Design, Addison-Wesley Publishing Company, Reading, Massachusetts, 1971. - 6. Himmelblau, D. M., Applied Nonlinear Programming, McGraw-Hill Book Company, New York, 1972. - 7. Leopold, R., and Reuter, W., "Three Award Winning Designs--FDL, LHA, DD-963: Method and Selected Features," <u>Transactions</u>, SNAME Vol. 79, 1971, pp. 297-365. - 8. Vanderplaats, Garret N., <u>Automated Optimization</u> <u>Techniques for Aircraft Synthesis</u>, AIAA Paper No. 76-909, AIAA Aircraft Systems and Technology Meeting, Dallas, Texas, September 27-29, 1976. - 9. Vanderplaats, Garret N., and Moses, F., "Structural Optimization By Methods of Feasible Directions," <u>Computers and Structures</u>, Vol. 3, July 1973, pp. 739-755. - 10. Vanderplaats, Garret N., Hicks, Raymond N., and Murman, Earl M., "Application of Numerical Optimization Techniques to Airfoil Design," Aerodynamic Analysis Requiring Advanced Computers, NASA SP-347, Part II, March 1975, pp. 749-768. - 11. Zoutendijik, G., <u>Methods of Feasible Directions</u>, Elsevier Publishing Co., Amsterdam, 1960. - 12. Goodwin, Michael J., Ship Synthesis Model for Coast Guard Cutters, Massachusetts Institute of Technology, Department of Ocean Engineering, Master's Thesis, June 1975. - 13. Gertler, Morton, A Reanalysis of the Original Test Data for the Taylor Standard Series, David W. Taylor Model Basin Report 806, Washington, D.C., Government Printing Office, 1954. - 14. "Ship Work Breakdown Structure," NAVSHIPS 0900-039-9010, Naval Ship Systems Command, Department of the Navy, Washington, D.C. 20360, 01 March 1973. - 15. Murphy, R.D., Sabat, D. J., and Taylor, R.S., "Least Cost Ship Characteristics by Computer Techniques," Marine Technology, Vol. 2, No. 2, April 1965, pp. 174-202. - 16. Nowacki, Horst, Computer-Aided Ship Design Lecture Notes, The University of Michigan, Department of Naval Architecture and Marine Engineering, Report No. 018, January-April 1969. - 17. Mandel, P., and Leopold, R., Optimization Methods Applied to Ship
Design, Transactions, SNAME, Vol. 74, 1966, pp. 477-521. - 18. Leopold, R., <u>Mathematical Methods of Optimization</u> <u>Applied to Ship Design</u>, <u>Massachusetts Institute of Technology Report No. 65-15, 1965.</u> - 19. Nowacki, H., Brusis, F., and Swift, P. M., <u>Tanker</u> Preliminary Design-An Optimization Problem With Constraints, <u>Transactions</u>, SNAME Vol. 78, 1970, pp. 357-380. - 20. Chyssostomidis, C., Optimization Techniques Applied to Containership Design, Massachusetts Institute of Technology Thesis, January 1968. - 21. Parsons, Michael G., Optimization Methods for Use in Computer-Aided Ship Design, STAR Symposium, Washington, D.C., August 26-29, 1975. - 22. Manning, George C., The Theory and Technique of Ship Design, Technology Press of Massachusetts Institute of Technology and John Wiley and Sons, Inc., New York, 1956. - 23. Saunders, Harold E., <u>Hydrodynamics in Ship Design</u>, Vol. I, The Society of Naval Architects and Marine Engineers, 74 Trinity Place, New York, New York, 1957. - 24. "Ship Design and Construction by CAD/CAM," Naval Architect, Vol. 33, pp. E147-E149, July 1982. - 25. King, James H., and Devine, Matthew D., "HANDE-A Computer-Aided Design Approach for Hydrofoil Ships," Naval Engineers Journal, April, 1981, pp. 120-130. APPENDIX A DESIGN EXAMPLE PAGE 001 A MAYAL POSTGRADUATE SCHOOL 104100 files optife T I T L E OPTIMIZATION OF PPELIMIMARY DESIGN ON FFG-7 CARC MAGES DF CENTROL DATA NAGE FILE: OPTOPS CUTPUT A MAVAL POSTGADUATE SCHOOL A 4.0 A 4.0 A 4.0 A 4.0 A 4.0 A 4.0 A 6.0 A 9 A 9 A 9 A 100K K B 100K K A 9 A 100K K DESCRIPTION SPANNING FUNCTION SPANNING PROPERTY STATEMENT OF THE STATEME . * OPTIMIZATION INFORMATION | 2 00000
F 20000
F 200000
F 200000
F 200000
F 200000 | |--| | 2 | | | CCASTRAINT INFOPMATION LONER BOUND -0. 110 COF+ 16 TCTAL NUPEER CF CCASTRAINED PARAMETERS -THERE ARE A CONSTRAINT SETS TO VAR A CHOCAL LINEAR TO VAR A CHOCAL CHOCAC C INPUT EXECUTION AVAILABLE * * ESTIMATED CATA STORAGE REQUIRENES SHIP SPECIFICATIONS IMPLT EXECTION AVAILABLE SHIP ALMBER I SOOO PPECKEDS PROKENS PROKENS PROFICE CHARD CHA SUPSTHAT GM/B MIN DELTA CF SPECIAL PAYLCAD INPUT HOLL ON COST PIT FEST FOR IC PASSAGE AREA HULL AREA SUP VCG NU VCG REF SHECTAL PAYLOAD INPUT QNTY 1TEM ONTY ITEM PAYL CAD SPECIFICATIONS ONTY ITEM **GNTY ITEM** ONTY ITEP 12 53 FILE: OPTFFG C O N N I N FORTRAN PAGGRAN FOR CONSTRAINED FUNCTION MINIMIZATION 5 FILE: OPTFFG ``` CCNSTRAINT VALUES 46-VECTOR! 1 0.62528+01 0.18473E+01 -0.3639E+01 -0.55370E+01 -0.42265E+01 -0.10050E+02 1 0.11848E+03 -0.56699E+01 -0.5570F+01 -0.62370E+01 -0.42265E+01 -0.10050E+02 PHERE ARE 1 ACTIVE SIDE CONSTRAINTS DECESSION VARIABLES AT LOWER OR UPPER BOUNDS (HINUS INDICATES LOWER BOUND) DECISION VARIABLES (X-VECTOR) 0.300008+03 0.907008+01 0.314008+01 0.593008+00 0.751008+00 SEARCH DIRECTION (S-VECTOR) 0.50000E+00 0.75000E+00 0. 90000E+00 0. 90000E+00 0.15556E-02 0.28650E+01 0.10000£+00 DNE-DIMERSIGNAL SEARCH INITIAL SIGNE - 0.1882E+04 PROPOSED ALPHA - 0.2034E+00 PUST-OFF FACTORS, (THETALIDE IT 1.NAC.) UPPER BOULDS CH DECISION VARIABLES (VUB) LCLER BOULDS CH DECISION VARIABLES (VLB) 0. 10 COOE - 03 O. 10COCE+00 -0.1500e-01 0. 1848 96+00 INERE ARE 3 VICLATED CONSTRAINTS O ACTIVE CONSTRAINTS CALCULATEC ALPHA - 0.20362E+00 ALL CONSTRAINTS APE NCN-LINEAR CONSTRAINT PARAMETER. BETA - 0.4 6000K-02 C. 5000E+01 INITIAL FLACTICA IAFORNATION 6.1000E-01 BEGIN ITERATION NUPBER 0.332577E+04 0.286505E+04 -0.2000E-01 1NE TA 0.100008 -01 6.10000E-01 - rea - 780 ``` DECISION VARIABLES (X-VECTOR) 0.36[09[+03 0.40066[+01 0.3067[+01 0.60265[+00 0.75526[+00 BESTM ITERATION NUMBER ``` CONSTRAINT VALUES (G-VECTOR) 1) 0.26026 - 01 - 0.3446 BE + 01 - 0.348 BT F + 01 - 0.232 10 E + 01 - 0.92463 E + 01 - 0.19515 E + 01 7) - 0.104 10 E + 01 - 0.50262 E + 01 - 0.50102 E + 01 - 0.6659 BE + 01 - 0.49736 E + 01 - 0.1000 E + 02 13) - 0.104 10 E + 00 DECISION VARIABLES (X-VECTOR) 0.395818+03 0.801708+01 0.307168+01 0.596398+00 0.755318+00 0. 59157E-03 SEARCH DIRECTION (5-VECTOR) 1) 0.100606+C1 0.96427E-02 3.12389E-01 -0.94199E-01 ONE-DIMENSIONAL SEARCH INITIAL SLOPE = 0.23506+04 PROPOSED ALPHA = 0.1028E+00 0-10002E+01 O ACTIVE SIDE CONSTRAINTS PUSH-CFF FACTORS, (THETALI), [=1,NAC) THEFE ARE 2 VIOLATED CONSTRAINTS CONSTRAINT MUMBERS ARE O ACTIVE CONSTRAINTS CALCULATED ALPHA = 0.11576E+00 CONSTRAINT PARAMETER. BETA . 0.360989E+04 THERE ARE ``` ``` 1N7 VALUES 16-VEFTOR) -0.33258E+00 -0.2127FE+01 -0.37159E+01 -0.20434E+01 -0.53516E+01 -0.40000E+00 -0.3358E+00 -0.2127FE+01 -0.49923E+01 -0.66718E+01 -0.4995E+01 -0.10000E+02 -0.33886E+00 SEARCH DIRECTION (S-VECTOR) 1) 0.55332E-01 0.14905E+00 0.21759E+00 -0.10000E+01 0.33969E-01 CECISION VARIABLES (X-VECTOR) 0.39913E+C3 0.82367E+01 0.31827E+01 0.50000E+00 0.75945E+00 DNE-DIMERSIONAL SEARCH | A TITAL SICPE = -0.6414 E+03 PROPOSED ALPHA = 0.5667E-01 0.233236400 O ACTIVE SIDE CONSTRAINTS PUSH-OFF FACTORS, (THETALI), I-1.NAC! O VIOLATED CONSTRAINTS THERE ARE 1 ACTIVE CONSTAINTS ECKSTRAIGT MARGERS ARE 0.16218E+00 CCNSTRAINT PARAPETER. BETA # DEGIN ITERATION NUPBER C.355612E+C4 CALCULATEE ALPHA * THEFE ARE THERE ARE - F80 ``` ``` CCNSTPAINT VALUES (G-VECTOR) -0.37184 E+01 -0.20402 E+01 -0.51632 E+01 -0.40000 E+09 | 1 -0.20516 E+01 -0.5050 E+01 -0.2050 E+02 | 0.20556 E+02 -0.2050 E+02 | 0.20556 E+02 | 0.2050 E+02 | 0.20556 0.20566 THERE ARE 1 ACTIVE SIDE CONSTRAINTS DECISION VARIABLES AT LOWER OR UPPER BOUNDS (MINUS INDICATES LOWER BOUND) SEARCH DIRECTION (S-VECTOR) - 0.10000E+01 0.30043E-01 0.24818E-01 -0.74564E-08 0.67735E-02 DECISION VARIABLES IX-VECTOR! DNE-DIMENSICYAL SEARCH INITIAL SICPE = -0.2725 E+04 PRCPOSED ALPMA = 0.1157E-01 0.997836+00 PUSH-OFF FACTORS, (THETA(1), 1=1,NAC) O VIOLATED CONSTRAINTS O ACTIVE CONSTRAINTS CALCULATEC A.PHA = 0.16214E-01 CONSTRAINT PAPAPETER, BETA = BEGIN ITERATION NUMBER 0.251587E+C4 THERE ARE THERE ARE ``` ``` THEFE ARE 1 ACTIVE CONSTRAINTS CONSTRAINTS BEGIN ITERATION NUMBER ``` TERE ARE TACTIVE SIDE CONSTRAINTS DECISION VARIABLES AT LOWER OR UPPER BOLNDS ININUS INDICATES LOWER BOLND) O VICLATED CONSTRAINTS HERE ARE PUSH-OFF FACTCRS, (THETALI), I=1,NAC.) 0.23053E-01 CCNSTPAINT PARAPETER, BETA = 0.21277E+00 0. 28141E-06 DNE-DIWENSIONAL SEARCH INITIAL SLOPE - -0.5726 E+02 PROPOSED ALPHA - 0.2632E-01 SEARCH DIRECTION (S-VECTOR) 1) 0.33391E-01 0.10000E+01 0.63269E+00 CALCULATEC ALPHA = 0.36237E-01 0.3514846+64 CECISION VARIABLES (X-VECTOR) 11 0.39462E+03 0.8569BE+01 0.32787E+01 0.50000E+00 0.76532E+00 BEGIN ITEFATICA NUMBER O VICLATED CONSTRAINTS O ACTIVE CONSTRAINTS HEFE ARE THERE ARE THERE ARE 1 ACTIVE SIDE CONSTRAINTS DECISION LARTABLES AT LOWER OR UPPER BOWNDS (MINUS INDICATES LOWER BOWND) PUSH-OFF FACTORS, ITHETALLI, 1-1,NACI CCKSTPAINT PARAMETER, BETA . 0.99853E+00 SEAPCH DIRECTION (5-VECTOR) - C.10060E+C1 0.17061E-01 0.0 ONE-DIMERSICHAL SEARCF INITIAL SICPE = -6.2476E+04 PRCPOSED ALPHA = 0.8243E-02 0.10976E-02 CALCULATEC ALPHA - 0.351214E+C4 DECISION VARIABLES (X-VECTOR) 1. C.39430E+03 0.85700E+01 0.32787E+01 0.50000E+00 0.76533E+00 CCMSTRAINI VALUES (G-VECTOR) 11 -C.14859f+c0 -C.12039E+01 -0.39000E+01 -0.18032E+01 -0.31254E+01 -0.40009E+00 13 -0.28571E+01 -0.50358E+01 -0.5018E+01 -0.66543E+01 -0.49540E+01 -0.10007E+02 ``` THEFE ARE 1 ACTIVE CONSTRAINTS CCNSTRAINT MAMBERS ARE BEGIN ITEPATION NUMBER ``` U VICLATED CONSTRAINTS THERE ARE THERE ARE I ACTIVE SIDE CONSTRAINTS DECISION VARIABLES AT LOWER OR UPPER BOUNDS (MINUS INDICATES LOWER BOUND) PUSE-OFF FACTCRS. (THETALI). 1=1,NAC) 0.141736-01 CCNSTRAINT PARAFETER, BETA - 0.37865E+00 SEARCH DIPECTION (S-VECTOR) 0.14243E-01 0.10000E+01 0.72140E+00 -0.07272E-06 ONE-DIMENSIONAL SEARCH INITIAL SLOPE = -0.3519E+02 PROPOSED ALPHA = 0.1630E-01 0.211466-01 CALCULATEC ALPHA = 0.351172E+C4 - reo CECISION VARIABLES (X-VECTOR) 0.39439E+03 0.87617E+01 0.33266E+01 0.50000E+00 0.77134E+00 CCRSTRAINT VALUES (G-VECTOR) 1) -0.1555 = 10 -0.1555 = 10 -0.6968 = 10 -0.50180 = 10 -0.16835 = 10 -0.20790 = 10 -0.400 C0E + 10 -0.1000 E + 10 -0.1000 E + 10 -0.1000 E + 10 -0.1000 E + 10 -0.66546 = 10 -0.1000 E + 10 -0.1000 E + 10 -0.66546 = 10 -0.1000 E + 10 -0.1000 E + 10 -0.66546 = 10 -0.1000 E + FINAL OPTIPIZATION INFORMATION 0.351172E+04 DECISION VARIABLES (X-VECTOR) 1 0.39439E+03 0.87617E+01 0.33266E+01 0.5000CE+00 0.77134E+00 CCMSTFAINT VALUES (G-VECTOR) -0.155556-01 -0.20796-01 -0.400006-02 13 -0.15576-01 -0.503528-01 -0.50306-02 13 -0.4000008-02 13 -0.4000008-02 THEFE ARE I ACTIVE CONSTRAINTS CONSTRAINTS O VIOLATED CONSTRAINTS THERE ARE THERE ARE 1 ACTIVE SIDE CONSTRAINTS DECISION VARIABLES AT LOWER OR UPPER BOWNDS (MINUS INDICATES LOWER BOWNE) LESS THAN DABFUN FOR 3 ITERATIONS TERPINATION CRITERION ABS (CBJ 1)-08J(1-1)) NUMBER OF THERATICHS . DBJECTIVE FUNCTION WAS EVALUATED 60 TIMES 60 TIMES CONSTRAINT FUNCTIONS WERE EVALUATED FILE: CPTFFG CUTPUT | | | | | | | | | | | 7 | |---------------------------------------|--|---|---------|---|----------------------|------------------------
--|---------------------------------|--------|--------| | | 00000
00000 | | | | | | | =0 | | AREA | | | 2000000
2000000
2000000
2000000
2000000 | | | 24000000000000000000000000000000000000 | 3000 | | 00000 | ZH | | SUP | | | 00000 | ~ 9 | | | | | | NEG | | AREA | | 5117 E+04 | 745
745
745
705
705
705
705
705
705
705
705
705
70 | 0000000000000 | | 07#140
841846
8488
8488
8480
8686
8686
8686
8686
8 | SUPSTMAT
GM/B MIN | _ N⊢OE | S CORR
RNTCKS
ASSAGE | MULL MAT
SUPSTMAT
PASSAGE | - | REF AR | | 0.3511 | 00000 | | TI ONS | 800008808 | | | | - | D INPU | 904 | | VAL UE | 200000
0000000
00000000000000000000000 | 00000000000000000000000000000000000000 | C1 F1CA | N9000N4046 | 6 | 3000N | W0007 | TENES
TENES | PAYLOA | 3 | | | | 11111111111 | SPE | \$ \$ \$\$\$\$ | | ARG
TY | ب 🗲 | - 48-44
- 48-44 | # | 90 > | | FUNC TI CN | ರಕೆಟೆರೆ | 20000000000000000000000000000000000000 | SHIP | < C∪- | SPERT | T - | F A | RAT T | SPEC 1 | Ħ | | • | B°in⊲⊷ae
AN
AS | 00000000000000000000000000000000000000 | | | | | _ | WINN
NOTE I | | | | - | Z. Z. | 99999999999 | i | -300%-wacod | 4000 | | 99999 | 200
200 | | S | | 55
55 | m
ea | 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - | | 4.
20. | 4004 | | | AME
AME | | Z | | #5
25
21 | VARIABLE CO. | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | w | عدمها ٧١٠ | T# 20 | L | 446 | | ERP | | OBJECTIVE FUNCTION
GLOBAL LOCATION | 20 C | | | >>KIJBUU
KIMAB//YX
JAKFBI
KOO | SS SS S | 54744
64744
6466 | STATE OF STA | ASSE
CHAI
GHAI | | 3 | | - | _ | G | | | | | | | | | **057 PUT** FILE: OPTFFG ONTY ITEM PAYLOAC SPECIFICATIONS NO SPECIAL PAYLOAD INPUT | anana
arana
ara | 40mm ² 0
004400
04mm | 00000 | 2.84 | ************************************** | INUED
DENSITY
LBS/CU FT | | 000-11
000-11
000-11
000-11 | á | 4101
4101
8000
8000 | | 56.56
10.50
10.00
10.00
10.00
10.00 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | |--|---|---|----------|--|--------------------------------|---|---|----------|----------------------------------|---|--|---| | 00000
00000
00000
00000 | 000000
000000
00000
00000
00000 | 00000 | C. 2207 | 00000000000000000000000000000000000000 | ROUPING
VOL F | 000000
000000
0000000
00000000
400000000 | 6.0306
0.0000
0.00000
0.00000 | 0.5780 | 0,0360
0,00110
0,0051 | 000000 | 0.0299
0.0298
0.0002 | 0000
0000
0000
0000
0000 | | 25
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8 wm
owner
contracts
mayoo
awoodo | 00000 | .111150. | MU STANDAND BOWNERS STANDAND BOWN THE B | UNCTIONAL G
VOLUME
CU FF | 2000-201 | 1542
2036
4408
5978 | 291129. | 2000
4000
4000
4000 | 130284.
20170.
20190.
4113. | 15095
15095
8005 | 2001
2001
2001
2000
2000 | | 00000 | 999999
899999
899999
44000 | 00000 | 0.0398 | •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• | RE SUL TSFU
WT FRAC | 9999999 | 0000 | 0. 406 2 | 0000 | 000000
u=0000
u=00000
u=00000
u=00000 | 000 | 0000 | | 0440
000-0 | | 00000 | 141.1 | woogoogo
woogoooo | METCHT
WEIGHT
TONS | 0 | | 1440.8 | 0000
0000
0000 | 24
24
24
24
24
24
24
24
24
24
24
24
24
2 | 40.0
21.4 | 4.00
4.00
4.004 | | 20020
20020
2002
2002
2002
2002
2002
2 | | CARPT CARD CARD CARD CARD CARD CARD CARD CARD | PERSCAEL | | NAME | SATEGEN
SOUTH
TOOKUT
TOOKUT
TOOKUT
TATAK | STONAGE
STONES
PER STON
POTENTER | SHIP CPS | CCATACL
SHIP CONT
DAM CONT | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | DECK ACK
ANCH, ACT
UNREP ACT | 24 MIN | | 484540
484640
484640 | | 42.000
00000 | 200 | | - ec | <i>いころろうこと</i>
こころうこここ
こころうちょう | 2272
2272
2272
2272
2272
2272
2272
227 | 300 | | るるるのでで
こころろうこと
のまできずい | 933
933
948 | 0200
0244
0200 | | | 444 KW ~
6444600
644600 | INU ED
DENSI TY
LBS/CU FT | 000000 | • • • | 15.77 | | | |-----------------
--|---------------------------------|--|---|-------------------------------|--|-------------------| | | 40000000
40000000
400000000 | IDUP ING CONT | 000000
420000
4200000 | 0000 | 1.0000
YEG | | 200 | | SCHOOL | MW WW W W W W W W W W W W W W W W W W W | CTIONAL GI | 24
44
40
40
40
40
40
40
40
40
40
40
40
40 | •••
•••
•••
••• | LISTING
LISTING
LITERAC | 200000000000000000000000000000000000000 | 0.0 | | PO STGRAD UA TE | 25 NO 25 | RE SULTS FUNC
WT FRAC | 999999 | 0000000000
0000000000
0000000000000000 | -BSCI WEIGHT
FULL LD | 24 A A A A A A A A A A A A A A A A A A A | 00.0 | | HAVAL | evotvove
evotvove | DETAIL ED
WEIGHT
TONS | 000000 | 400 WW W W W W W W W W W W W W W W W W W | 3546.8
RESCUTS-
TONS | 41-040000000000000000000000000000000000 | 200 | | BUT PUT A | A THE CAME TO THE CONTRACT OF THE COLUMN CAME TO TH | NAME | AAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
WIPOWEINIA
WIECCEP
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WIECCOPE
WI | NUMBER 1
DETAILED
NAME | TOURS OF THE COURS | PROPUNITY CONDITY | | PTFFG | SHAMMANANA
RAMANANANA
RAMANANANA
RAMANANANANA
RAMANANANANANANANANANANANANANANANANANANA | e e | 444444
44444
0-Wwar | www.44444
 | SHIP | 000000000000000000000000000000000000000 | 201
202 | | | | | | | • | | | |--------------|--|--------------------------------|--|--
--|-------------------------------|----------| | | の女子子と | CONTINUED | 1000000000000000000000000000000000000 | 404m48/4 4m2 mg v1n
0044004m004004004040
4044m44000m00000004040 | できないます。 ままま まままま かんかい まままま かんかいきょうしゅうかいこう かんかい こうしょうしょうしょうしょう かんしょうしゅうしゅう しゅうしゅう しゅう | CGNT INUED | 9.62 | | SCHOOL | 00000000000000000000000000000000000000 | LISTING
HT FRAC
LITE SH | 000000000000000000000000000000000000000 | 444444 440 WE WE WAS | 99999999999999999999999999999999999999 | LISTING
WI FRAC
LITE SH | 0.0020 | | POSTGRADUATE | 00000000000000000000000000000000000000 | -BSCI WEIGHT BY FRAC | 0000000
0000000
0000000
00000000000000 | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | -8 SCI WE IGHT | 0.0014 | | MAAL | 00 mm m | PESUL 15-
TEREST 5-
TONS | 0 | Will a minopooded and minopooded and minopooded and modernooded and and and and and and and and and an | nametalengonogoden
Namenagonogoden
Namenagonogoden
Namenagoden | MESC TS | 2.0 | | OUTPUT A | Annalander
Totalander
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadenormed
Sadeno | MMBER 1 | SOMPTON PROPERTY PROP | THOUSENS THE COLUMN WAS THE COLUMN WAS THE COLUMN COLUMN AND OF THE COLUMN A CHILD AND C | TSARIGHTONNUMBUNDS SARIGHTON SARIGHT | ETATI
NAME | STOR ECP | | PTFF6 | WALCHOUNDUN
WALCHOO | SHIP | UMUNUU
OOOONN
O~NMO~ | 44444444444444444444444444444444444444 | NEWNEWNER WENTHERNENNENNENN
000000000000000000000000000 | E œ | 175 | | | 0040004vivo | では、
では、
では、
では、
では、
では、
では、
では、 | 4000-000-000 | CONT I MJED | |------------------|--
--|---|--| | SCHOOL
SCHOOL | 000000000 | 4400644mmm4840 0 V | 000000000000000000000000000000000000000 | 2 | | POSTGRADUATE | 00000000000000000000000000000000000000 | 49494949494949494949494949494949494949 | 9 9 9 WN9 m 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | ## 00000000000000000000000000000000000 | | KAVAL | 004004-wed | ACHOMORPHO MANAGEMENT WAS ACTUAL WATER WAT | | ms
2 | | GUT PUT A | THE STATE OF S | TERTICATION OF THE STATE | | LEAST SALES OF THE | | PTFFG | を見られることできる。
できないとうないできる。
できない。 | 00000000000000000000000000000000000000 | 20020000000000000000000000000000000000 | 2 000000000000000000000000000000000000 | # APPENDIX B #### GLOBAL CATALOG | GLOBAL | FORTRAN | DEFINITION LOCATION NAME | |--------|-----------|---------------------------------| | 1 | DISPFL | Full Load Displacement, tons | | 2 | Vsus | Maximum Sustained Speed, knots | | 3 | Vend | Endurance Speed, knots | | 4 | ENDUR | Endurance Range, naut. mi. | | 5 | LBP | Length Btwn Perpendiculars, ft. | | 6 | L/B | Length to Beam Ratio | | 7 | B/H | Beam to Draft Ratio | | 8 | Ср | Prismatic Coefficient | | 9 | Сж | Midship Section Coefficient | | • | | | | • | | | | • | | | | 77 | G1 | DISPFL/DPTRY - 1.0 | | 78 | G2 | CGFLD/KGTRY - 1.0 | | 79 | G3 | 2.0/BTR - 1.0 | | 80 | G4 | BTR/4.0 - 1.0 | | 81 | G5 | -R/10.0 | | 82 | G6 | 0.48/Cp - 1.0 | | 83 | G7 | Cp/0.70 - 1.0 | | 84 | G8 | 0.5/SLRAT - 1.0 | | 85 | G9 | 0.001/Cv - 1.0 | APPENDIX B ## GLOBAL CATALOG | GLOBAL | FORTRAN | DEFINITION LOCATION NAME | |--------|---------|--------------------------| | 86 | G10 | Cv/0.006 - 1.0 | | 87 | G11 | SLRAT/2.0 - 1.0 | | 88 | G12 | -1.0 | | 89 | G13 | RSSV/DHV - 1.0 | | • | | | | • | | | | • | | | | 2501 | | | Note: Elements 2-76 and 90-2501 are contained in the \underline{S} vector described in Chapter II. Only those of interest to the thesis have been listed. #### APPENDIX C #### NOMENCLATURE a* Move Parameter BTR Beam to Draft Ratio Beam at Midship Section, ft. BM Metacentric Radius, ft. B/H Beam to Draft Ratio Ca Transverse Moment of Inertia Coefficient CASDAC Computer-aided Ship Design and Construc- tion Cb Block Coefficient CGFLD VCG @ Full Load Displacement, ft. Cp Prismatic Coefficient Cr Residual Resistance Coefficient Cv Volumetric Coefficient Cwp Waterplane Coefficient Cx Midship Section Coefficient DISPFL Full Load Displacement, long tons DHV Deck House Volume, ft³ DPTRY Displacement Estimate, long tons FO Freeboard at Station 0, ft. F10 Freeboard at Station 10, ft. F20 Freeboard at Station 20, ft. FSCORR Free Surface Correction Factor, ft. ## APPENDIX C ### NOMENCLATURE G_i() Constraint Values GM Metacentric Height, ft. GM/B Ratio of Metacentric Height to Beam H Full Load Draft, ft. KB Height of Center of Bouyancy, ft. KG Height of Center of Gravity, ft. KGTRY KG Estimate, ft. LBP Length Between Perpendiculars, ft. L/B Length to Beam Ratio OBJ Objective Function q Iteration Number RSSV Required Superstructure Volume, ft³ Search Direction S() Array for Storing Ship Specifications SHP Shaft Horsepower SLRAT Speed-Length Ratio VCG Vertical Center of Gravity, ft. Vsus Maximum Continuous Sustained Speed, kts. X Design Variable Vector # INITIAL DISTRIBUTION LIST | | | No. Copies | |----|--|------------| | 1. | Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314 | 2 | | 2. | Library, Code 0142
Naval Postgraduate School
Monterey, California 93940 | 2 | | 3. | Department Chairman, Code 69Mx
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940 | 2 | | 4. | Dr. Garret N. Vanderplaats, Code 69Vn
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940 | 3 | | 5. | Lt. James L. Jenkins, USN
8700 University Pt. Cir.
Bremerton, Washington 98310 | 5 | | 6. | Professor Dale Caulkins Mail Stop FulO Ocean Engineering University of Washington Seattle, Washington 98195 | 1 | | 7. | LCDR Michael R. Reed, USN
Board of Inspection and Survey
Washington, D.C. 20320 | 1 | | 8. | Michael G. Parsons Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, Michigan 48104 | 1 | | 9. | LCDR Dave Stone, USN Department of Ocean Engineering Room 5-317 Massachusetts Institute of Technology Cambridge, Massachusetts 02139 | 1 | # INITIAL DISTRIBUTION LIST (Continued) | | | No. Copies | |-----|--|------------| | 10. | Commander (NAVSEA 5011) ATTN: Kit Ryan | 1 | | | Naval Sea Systems Command
Washington, D.C. 20362 | | | 11. | Commander (NAVSEA 56D3) ATTN: CDR Dennis Mahoney Naval Sea Systems Command Washington, D.C. 20362 | 1 | | 12. | Commander (NAVSEA 50112) ATTN: LCDR Ty Cassedy Naval Sea Systems Command Washington, D.C. 20362 | 1 | | 13. | Commander (PMS 400D) ATTN: CDR Graham Project Manager Systems Naval Sea Systems Command Washington, D.C. 20362 | 1 | | 14. | Lt. Fred A. Butterfield, III, USN 584-C Michelson Road Monterey, California 93940 | 1 | | 15. | LCDR M. Maxiner, Code 69MQ Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940 | 1 |